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SUMMARY internal osmotic pressure. The cell wall is also a selective filter,

Why some viruses are enveloped while others lack an outer lipid
bilayer is a major question in viral evolution but one that has
received relatively little attention. The viral envelope serves several
functions, including protecting the RNA or DNA molecule(s),
evading recognition by the immune system, and facilitating virus
entry. Despite these commonalities, viral envelopes come in a
wide variety of shapes and configurations. The evolution of the
viral envelope is made more puzzling by the fact that nonenvel-
oped viruses are able to infect a diverse range of hosts across the
tree of life. We reviewed the entry, transmission, and exit path-
ways of all (101) viral families on the 2013 International Commit-
tee on Taxonomy of Viruses (ICTV) list. By doing this, we re-
vealed a strong association between the lack of a viral envelope and
the presence of a cell wall in the hosts these viruses infect. We were
able to propose a new hypothesis for the existence of enveloped
and nonenveloped viruses, in which the latter represent an adap-
tation to cells surrounded by a cell wall, while the former are an
adaptation to animal cells where cell walls are absent. In particu-
lar, cell walls inhibit viral entry and exit, as well as viral transport
within an organism, all of which are critical waypoints for success-
ful infection and spread. Finally, we discuss how this new model
for the origin of the viral envelope impacts our overall under-
standing of virus evolution.

INTRODUCTION

he majority of organisms that act as hosts for viruses possess a

cell wall. Cell walls are robust layers that surround the cell
membrane and are best known in plants, fungi, protists, algae, and
bacteria. Cell walls are clearly ancient, and while the similarity of
cell wall components indicates a shared ancestry among algae and
plants (1), studies of brown algae and Archeaplastida (i.e., green
and red algae and land plants) suggest that cell walls have evolved
convergently (2). The cell wall has a variety of functions from
protection to the maintenance of cell shape, although its most
important role is to provide structural support to counteract high
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allowing free diffusion of small molecules and ions. Experiments
with cell walls in plants and bacteria have determined an exclusion
size of approximately 50 to 60 kDa (3-5). This allows the diffusion
of important signaling molecules, such as phytohormones in
plants, but not virus particles.

Cell walls differ in number and composition, depending on the
organism. Several plants have a secondary cell wall (6), while bac-
teria and Archaea possess only a single cell wall. The diversity of
cell wall components has led to several classification systems based
on their complexity and composition, such as the classification
systems for algae (7) and flagellates (8), and these systems can be
used to assess the rigidity of a cell wall. While the majority of
bacteria possess a rigid cell wall due to the presence of peptidogly-
can, in some cases, such as Mycoplasma, there is no such rigid
“shell,” and the cell walls consist of a plasma membrane reinforced
with glycocalyx, a glycoprotein polysaccharide (9, 10). Similarly,
most members of the Archaea domain have a crystalline protein
layer, called the surface layer (S-layer), as their cell wall lacks pep-
tidoglycans (10-12). As a consequence, the cell walls of most Ar-
chaea are less rigid than those of bacteria.

In marked contrast, animal cells lack cell walls and are sur-
rounded by a flexible lipid bilayer, the cell membrane, that can
contain numerous important functional modifications such as re-
ceptors or other membrane-bound structures. These structures
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are responsible for molecule uptake and excretion, are involved in
cell signaling, and maintain a stable osmotic pressure and pH (13).
Hence, the cell walls found in plants, fungi, protists, algae, and
bacteria provide a rigid and strong barrier for viral entry and exit
not seen in animal cells. Critically, viruses cannot enter cells that
possess cell walls by endocytosis or exit these cells by budding, and
instead they rely on a number of different approaches.

While viral genomes encode the structural proteins they re-
quire, enveloped viruses acquire a major component of their en-
velope from the host cell through budding and are able to modify
it by inserting their own proteins (14). The envelope may be ac-
quired from the host cell membrane or intracellular compart-
ment, such as the endoplasmic reticulum or Golgi compartment
(15). Upon virus entry, each layer of a virus serves to overcome a
specific host cell barrier. After each successful breach, the corre-
sponding layer of the virus is lost, eventually delivering the un-
packed genomic payload to its origin of replication. Inversely,
successful virus exit involves the acquisition of these layers. How-
ever, the pathways for virus entry and exit differ substantially,
especially among viruses infecting cells surrounded by a cell wall.

To understand the evolution of the viral envelope, we reviewed
and compared the mechanisms of virus entry, spread, and exit
among all known virus families. Strikingly, this revealed that en-
veloped viruses predominantly infect organisms without cell
walls, while viruses without an envelope can infect hosts with and
without cell wells, although the majority of their hosts possess cell
walls. From this analysis, we hypothesize that the lack of an enve-
lope is a specific viral adaptation to the presence of cell walls, while
the viral envelope is an adaptation to hosts that lack cell walls.
Although there are a number of exceptions to this simple evolu-
tionary rule, closer inspection reveals that these individual adap-
tations support the general distinction noted above. Indeed, we
show that viruses from organisms possessing cell walls have
evolved a variety of ways to ensure successful infection and spread.
While entry pathways of known viruses have been compared and
analyzed extensively in previous publications (16-21), this is, to
our knowledge, the first synthesis that links viral evolution to the
structure of host cells.

VIRUS ENTRY, TRANSMISSION, AND EXIT

We selected 101 virus families from the 2013 release of the Inter-
national Committee on Taxonomy of Viruses (ICTV) (22). We
excluded the viroid families Avsunviroidae and Pospiviroidae, vi-
rus satellites, and the family Metaviridae, since they contain eu-
karyotic retrotransposons. Of the 101 virus families analyzed, 65
were nonenveloped virus families, while 37 were enveloped (the
Iridoviridae can be both enveloped and nonenveloped and hence
were included in both groups [23, 24]). To identify the host range
of these virus families, we created seven broad classes of host or-
ganisms based on their identified hosts (see Data Sets S1 and S2 in
the supplemental material) and their taxonomic position in the
tree of life (D. R. Maddison and K.-S. Schultz, Tree of Life Web
Project [http://tolweb.org]). In total, we identified 123 host types,
of which 64 were animal cells with no cell walls, while 59 had cells
surrounded by a cell wall. All bacteria were grouped in the class
(simplified taxonomic class) “Eubacteria” and hence distinct from
the Archaea. The eukaryotes were split into five classes (simplified
taxonomic classes): “Plants” (which contains all plants and algae),
“Protozoa,” “Fungi,” “Invertebrates,” and “Vertebrates” (Fig. 1).
“Fungi” contains all Eumycota, while animals were subdivided
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into “Vertebrates” (Chordata) and “Invertebrates” (all non-Chor-
data). The remaining members of the animal clade were classified
as “Protozoa.” Importantly, this classification was developed only
as a general guide for data analysis and did not impact any of the
major conclusions drawn.

We then analyzed the 101 virus families to determine the tax-
onomic distribution of the presence/absence of envelopes among
viruses. This revealed a strong association between the presence of
the viral envelope and the absence of a cell wall in the host organ-
ism. Specifically, the 65 nonenveloped virus families infected 79
host types, of which 49 had cells with a cell wall while 30 did not
(Table 1 and Fig. 1). In contrast, of the 37 enveloped virus families,
only 10 infected host types with cell walls compared to 34 host
types without cell walls. Hence, the majority of host types with cell
walls are infected by nonenveloped viruses, while the majority of
enveloped viruses infect animal cells. Only a few enveloped viruses
are known to infect cells with cell walls, representing unique cases
that are likely to be highly specialized adaptations (see below).

We also analyzed the pathways for virus entry, transmission,
and exit (Tables 2 and 3; see below). Viral entry into animal
cells relies on endocytosis pathways for both enveloped and
nonenveloped viruses. However, endocytosis is not possible in
organisms that possess a cell wall, since it creates an important
physical barrier. Virus release by excretion pathways or bud-
ding is similarly hindered. Of the 65 nonenveloped virus fam-
ilies analyzed, 21 are released by lysis, while 10 are released in a
nonlytic pathway (Table 3). In contrast, only five enveloped
virus families exit the host cell by lysis, while 21 utilize a non-
lytic pathway, mostly budding or the endosomal sorting com-
plex required for transport (ESCRT). ESCRT is a conserved
molecular complex that modulates membrane scission into the
cytoplasm. However, several viruses have managed to use parts
of the ESCRT complex for budding and subsequent release into
the cytoplasm (26). In addition, some plant and fungal viruses
spread vertically, never leaving the cell (16). Finally, our anal-
ysis of pathways of viral transmission within hosts showed that,
among multicellular organisms with cell walls like plants, the
capsid or ribonucleoprotein (RNP) is the key factor, such that
an envelope is not required (see below). Accordingly, we pro-
pose that nonenveloped viruses are an adaptation to the evolu-
tion of the cell wall, while the viral envelope constitutes an
adaptation to cells without cell walls (i.e., animal cells). We
now discuss, in more detail, how these observations relate to
aspects of the virus life cycle.

Although our review of the literature covers all those virus
families for which data are available— entry and exit pathways for
71 and 57 virus families, respectively—it is important to note that
it does not include all known viruses (Tables 2 and 3). Although
we are able to describe pathways from all known host kingdoms,
most data are necessarily from the better-known viruses. Clearly,
it will be important to determine whether the generalities noted
here can be extended to all known virus groups, including those
only recently described, and it is striking that there is relatively
little data from most archaeal and insect viruses.

Virus Entry

The major role of membranes in animal cells is to create distinct
compartments and to receive and send signals from outside the
cell. Therefore, viruses have to enter and exit animal cells in a
systemic infection or to reach their target tissue. Viruses have
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TABLE 1 Summary of the pattern of association between virus
envelopes (presence or absence) and hosts (with and without cell wall)
among 101 virus families”

No. of virus families

Host Nonenveloped Enveloped Total
With cell wall 49 10 59
No cell wall 30 34 64
Total 79 44

“ The S-layer of Archaea has been treated as cell wall. Note that some virus families can
infect hosts with and without cell wall and are therefore present in more than one
category.

overcome this barrier in animals by hijacking endo- and exocyto-
sis pathways.

Animal viruses have evolved several ways to enter animal cells,
although these pathways are always based on the flexibility of the
cell membrane (17). This flexibility allows different pathways for
virus uptake for both enveloped and nonenveloped viruses. Vi-
ruses are adapted to endocytosis pathways, as they offer entry
points usually used for nonspecific uptake of fluids, solutes, or
particles. As an example, vaccinia virus enters cells by mimicking
an apoptotic body, thereby triggering macropinocytosis (27, 28).
Virus uptake through endocytosis is induced upon binding of the
virus to cell surface receptors (20). For enveloped viruses, uptake
into animal cells involves the fusion and subsequent release of the
capsid (29), while nonenveloped viruses can create pores in the
cell membrane to deliver their viral genome (30, 31). A single virus
can induce several endocytosis pathways as observed for dengue
virus and HIV-1. While both can enter cells by triggering mac-
ropinocytosis (32, 33), additional entry pathways for dengue via
the clathrin-mediated pathway (34) and HIV-1 through fusion
have been observed (35).

Such entry pathways are blocked in plants and bacteria due to
the presence of the cell wall. While the plant cell wall allows diffu-
sion of water and ions, the diffusion of macromolecules is re-
stricted. However, endocytosis-like pathways have been observed
in plants (36) and bacteria (37). Lonhienne et al. (37) used green
fluorescent protein (GFP) to highlight endocytosis in Gemmata
obscuriglobus, a budding bacterium with Gram-negative cell wall
structure (38), and showed that GFP was able to diffuse through
the cell wall. The maximum exclusion size for cell walls of plants
and bacteria is approximately 60 kDa (3-5). We estimated the
diameter of a spherical protein that can diffuse freely through the
cell wall to be ~5.126 nm, which approximately corresponds to
the width of two DNA double helices (Appendix). Consequently,
while the GFP, with a molecular mass of 26.9 kDa and a diameter
of 2.4 nm (39, 40), is able to diffuse through cell walls, viruses
cannot. Critically, therefore, the intrinsic rigidity of cell walls in
plants means that plant pathogens have evolved a variety of ways
to penetrate and infect their hosts (41). We now discuss some of
these adaptations.

FIG 1 Association between known virus families and the presence of a cell
wall, surface layer (S-layer), or absence in the hosts they infect. The schematic
phylogenetic tree represents our simplified taxonomic classes as defined in the
text. The abbreviations for the different host classes are as follows: Ba, Bacteria;
Ar, Archaea; Pl, Plants; Pr, Protozoa; Fu, Fungi; Inve, Invertebrates; Ve, Ver-
tebrates.
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TABLE 2 Cell entry pathways of the virus families analyzed”

TABLE 2 (Continued)

Cell entry pathway Virus family [reference(s)]” Cell entry pathway Virus family [reference(s)]”

Endocytosis Caliciviridae (102) Malacoherpesviridae* (155)
Hepeviridae (111) Paramyxoviridae* (157)
Parvoviridae (123, 124) Plasmaviridae* (59, 161)
Phycodnaviridae (46) Polydnaviridae* (163-165)
Hepadnaviridae* (135) Retroviridae* (168)

Macropinocytosis Adenoviridae (103) Ejection® Microviridae (47)
Birnaviridae (108) Myoviridae (115, 116)
Papillomaviridae (117) Podoviridae (122)
Mimiviridae (125) Siphoviridae (129)
Totiviridae (130)
Filoviridae* (136-138) Pilus retraction Inoviridae (61)

Clathrin mediated

Caveolae

Lipid raft

Fusion

Herpesviridae* (141)
Nodaviridae* (145)
Paramyxoviridae* (148, 149)
Poxviridae* (27)

Adenoviridae (104—106)
Astroviridae (112)
Circoviridae (118)
Luteoviridae (126)
Papillomaviridae (131, 132)
Pestiviridae (139)
Picornaviridae (142, 143)
Polyomaviridae (146)
Reoviridae (150, 151)
Iridoviridae(*) (152)
Coronaviridae* (154)
Arenaviridae* (156)
Arteriviridae* (158-160)
Asfarviridae* (162)
Baculoviridae* (166, 167)
Bornaviridae* (169)
Bunyaviridae* (170)
Filoviridae* (171)
Flaviviridae* (172, 173)
Orthomyxoviridae* (174)
Paramyxoviridae* (175)
Retroviridae* (176, 177)
Rhabdoviridae* (178)
Togaviridae* (179-181)

Papillomaviridae (107)
Picornaviridae (113)
Polyomaviridae (119, 120)
Hepadnaviridae* (127)
Retroviridae* (133)

Birnaviridae (108)
Caliciviridae (114)
Orthomyxoviridae* (128)

Corticoviridae (109)
Phycodnaviridae (45)
Picornaviridae (121)
Tectiviridae (109)
Iridoviridae(*) (134)
Arenaviridae* (140)
Baculoviridae* (144)
Coronaviridae* (147)
Cystoviridae* (50)
Herpesviridae* (153)
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Leviviridae? (43)

Picobirnaviridae? (110)

“ Families where no entry pathways have been published are not listed.

b Enveloped virus families are indicated by a * symbol, while (*) indicates virus families
containing enveloped and nonenveloped forms. A? symbol indicates putative exit
pathways. The corresponding source publication(s) or reference(s) is shown in
parentheses at the end of an entry.

¢ Ejection indicates membrane penetration, cell wall digestion, and genome ejection.

Membrane penetration

In plants and fungi, viruses do not actively breach the cell wall.
Plant viruses are obligate intracellular parasites in that they re-
main with their host indefinitely but can be transmitted by vec-
tors, fungi (42), mechanical injuries, or vertically (16). Fungal
viruses have adapted to cell walls by using hyphal anastomosis
(fusion of encountering vegetative hyphae) for horizontal trans-
mission and a persistent lifestyle for vertical transmission. Vertical
transmission allows fungal viruses to stay in the host (43). Simi-
larly, some plant viruses remain asymptomatic inside the host,
relying in vertical transmission through seeds (16, 21, 44).

The situation is complex in algae. While algae share similarities
with plants with respect to cell architecture, notable exceptions
exist. Chlorella, a single-cell green algae, is infected by Paramecium
bursaria chlorella virus 1 (PBCV-1) (45). PBCV-1 has an internal
membrane (that is, the membrane is surrounded by the capsid).
To enter its host, PBCV-1 degrades the Chlorella cell wall and fuses
its inner membrane with the cell membrane (45). Another algal
virus, Emiliana huxleyi virus 86, belongs to the Coccolthovirus ge-
nus and infects a wide range of eukaryotic algae in marine and
freshwater environments. Emiliana huxleyi is a marine calcifying
unicellular phytoplankton. Rather than a typical cell wall, these
phytoplanktons possess a characteristic calcite covering that sur-
rounds the cell membrane. Although it belongs to the Phycodna-
viridae family, like PBCV-1, Emiliana huxleyi virus 86 has an ad-
ditional outer membrane that covers the capsid, and to infect its
host, the virus fuses its outer membrane with the host membrane
or enters via an endocytic process (46). Since budding of Emiliana
huxleyi virus 86 particles from infected Emiliana huxleyi has been
demonstrated (46), we assume that the cell covering is not tight
enough to exclude viral particles. However, it has been proposed
that the calcified shell offers a certain degree of viral defense (46).
It should be noted that its capsid may possess cell wall-degrading
enzymes, although they are not required in this case. This example
of an “animal virus-like” entry mechanism shows that viruses in-
fecting unicellular algae have evolved several approaches to enter
their hosts.

Similar to plant pathogens, most bacteriophage have evolved
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TABLE 3 Cell exit pathways of the virus families analyzed”

Cell exit pathway Virus family [reference(s)]”

Unknown/nonlytic® Hepeviridae (182, 183)
Inoviridae (61)
Luteoviridae (189)
Mesoniviridae (194)
Nodaviridae (198)
Papillomaviridae (202)
Rudiviridae (207)
Totiviridae (212)
Bornaviridae* (216)
Bunyaviridae* (221)
Fuselloviridae* (225)
Malacoherpesviridae* (155)
ESCRT Picornaviridae (93)
Arenaviridae* (186)
Filoviridae* (190)
Flaviviridae* (195)
Rhabdoviridae* (199)
Hepadnaviridae* (203)
Herpesviridae* (208)
Paramyxoviridae* (213)
Poxviridae* (217)
Retroviridae* (222)
Budding Phycodnaviridae (46)
Reoviridae (187)
Asfarviridae* (191)
Baculoviridae* (144, 196)
Coronaviridae* (200)
Iridoviridae(*) (204)
Nyamiviridae* (209)
Orthomyxoviridae* (214)
Plasmaviridae* (218, 219)
Togaviridae* (223)

Annelloviridae (184, 185)
Astroviridae (188)
Birnaviridae (192, 193)
Caliciviridae (197)
Corticoviridae (201)
Leviviridae (205, 206)
Marnaviridae (210, 211)
Marseilleviridae (215)
Microviridae (220)
Mimiviridae (224)
Mpyoviridae (226)
Parvoviridae (227)
Phycodnaviridae (228)
Picornaviridae (229)
Podoviridae (230, 231)
Polyomaviridae (232)
Reoviridae (233)
Rudiviridae (234)
Siphoviridae (82, 235)
Tectiviridae (236)
Turriviridae (237)
Adenoviridae* (238)
Ascoviridae*? (239)
Circoviridae* (240, 241)
Cystoviridae* (242)
Polydnaviridae*? (243)

Lysis

“ Virus families without (published) exit pathways are not listed.

b Enveloped virus families are indicated by a * symbol, while (*) indicates families
containing enveloped and nonenveloped forms. A? symbol indicates putative exit
pathways. The corresponding source publication(s) or reference(s) is shown in
parentheses.

¢ Unknown/nonlytic indicates release pathways where no lytic pathway exists but viral
release has been observed.
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diverse entry pathways (Fig. 2). All known bacteriophage use lytic
enzymes to penetrate the cell wall, while different mechanisms
have been described to overcome the bacterial membranes. Most
bacteriophage follow a three-step program: (i) puncture the outer
cell wall, if present; (ii) digest the cell wall; (iii) insert the phage
genome into the host cell. Tail-less, nonenveloped bacteriophage,
such as $pX174, form a tube to deliver their genome into the host
(47). However, enveloped bacteriophage have also been observed.
Interestingly, these envelopes can surround the capsid, as in the
case of Cystovirus, or the envelope can be encapsulated by a capsid,
as in the case of Corticovirus or Tectivirus (48). To infect Gram-
negative bacteria, enveloped bacteriophage found in the Cystoviri-
dae and Corticoviridae families fuse their envelope with the outer
membrane of their hosts (48-50). Phages PRD1 and Bam35 be-
long to the Tectiviridae. Both are nonenveloped, but the capsid
encloses an internal membrane containing the genome. Despite
their similarity, PRD1 infects Gram-negative bacteria, while
Bam35 infects Gram-positive bacteria. The entry pathway from
Bam35 differs in some steps form PRD1 (Fig. 2). Both phages form
atube for DNA delivery which is initiated by capping vertices from
the capsid. The osmotic difference between the capsid and cytosol
pushes the internal membrane through a special vertex in the cap-
sid. The emerging membrane has lytic properties and digests the
cell wall, thereby forming a tube for subsequent DNA delivery (51,
52). PRDI possess proteins that are loosely associated with the
internal membrane and are able to puncture the outer membrane
(53, 54). In contrast, as Bam35 infects Gram-positive bacteria, it
does not need to perforate an outer membrane, although the genes
for outer membrane perforation are present in its genome (55). In
addition, these phages differ in how they pass the internal mem-
brane (56-58). Bam35 depolarizes the internal membrane, while
PRD1 does not, although mechanisms by which it functions are
not fully understood. Bacteriophage infecting Gram-positive bac-
teria do not need to pass an outer membrane and can attack the
cell wall directly. In the case of bacteriophage that have an enve-
lope covered by a protein capsid, such as Bam35, the envelope
facilitates the fusion with the inner membrane (57). Notably, Plas-
mavirus, an enveloped bacteriophage, exclusively infects Myco-
plasma, one of the few bacteria without a cell wall (59).

Another bacteriophage family has evolved a very different ap-
proach. Members of the Inoviridae attach to the pili of Gram-
negative bacteria (60). The retraction of the pili brings the capsid
into contact with the inner membrane where it disassembles and is
released into the cytoplasm (61). This approach circumvents the
outer membrane and cell wall altogether, abolishing the need for
an envelope and cell wall-digesting properties (Fig. 2).

The host range for enveloped bacteriophage does not include
Gram-positive bacteria, since the envelope cannot fuse and the
cell wall is not digested, as in the case of Cystovirus. The Inoviridae
similarly do not possess an envelope, since it is not required for
infection, as they bypass the outer membrane and cell wall by
using the pili of their host. The presence of the cell wall requires
cell wall-degrading enzymes for successful infection, which are
largely associated with base plates and capsids of bacteriophages.

Opverall, the analysis of viral entry pathways strongly supports
our hypothesis that the presence of a virus envelope is associated
with the absence of cell walls and vice versa, such that these two
traits have an intimate evolutionary relationship (Fig. 1). In par-
ticular, the presence or absence of a viral envelope is clearly better
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associated with cell structure, especially the presence or absence of
a cell wall, than to a specific type of host species.

Intrahost Virus Spread

We now examine how the presence of the cell wall, which influ-
ences cell-to-cell communications, impacts viral spread within an
individual host. Once plant viruses enter epidermal or mesophyll
cells, systemic transport is possible by taking advantage of the
plant cell architecture. It is known that plant viruses move from
cell to cell by plasmodesmata and across whole vascular plants by
phloem (62). Multicellular fungi are either coenocytic (large cells
with several nuclei) or the cells are separated by septa, i.e., end
walls that can be perforated and therefore connect neighboring
hyphae. The movement of viral capsids within or between fungi is
notrestricted and can occur horizontally by hyphal anastomosis, a
naturally occurring process in which two hyphal cells create a
fusion aperture to allow the migration and exchange of nuclei and
cytoplasm (63, 64).

Due to a general inability to infect new hosts by penetrating the
cell walls, plant and fungal viruses rely on different mechanisms to
gain entry into new hosts, with arthropod vectors a key element.
Using vectors to infect new hosts is possible, since the cell wall is
breached upon feeding, which we therefore propose to be a sec-
ondary adaptation in plant and fungal viruses (see below). Viruses
in insects can be classified into two groups based on their mode of
transmission—noncirculative and circulative (18)—which reflect
how long a virus is viable in the vector during transmission to a
new host. Noncirculative transmission is essential for viruses that
remain within the vector at the mouthparts or foregut and need to
be immediately inoculated into a new host after acquisition by the
vector (65). In contrast, circulative transmission allows longer
times between acquisition and transmission of the virus into the
new host by circulating across the gut, hemolymph, and salivary
gland before being inoculated into a new host. Circulative plant
and insect viruses can undergo this process with or without repli-
cation.

Transport across the plasmodesmata requires a virus-encoded
movement protein which interacts with the plasmodesmata to
allow the passage of the virus particles (66). The transport of vi-
ruses within plants occurs either as a RNP or viral capsid (67, 68)
but, importantly, not as enveloped viruses. Experiments in toma-
toes infected with Tomato leaf curly virus (69, 70) and Tomato
bushy stunt virus (TBSV) (71-73) showed that viruses without the
ability to form capsids were transported from cell to cell but with
a lower efficiency. Interestingly, only four plant-infecting virus
genera possess an envelope: Cytorhabdovirus, Nucleorhabdovirus
(both of which are members of the family Rhabdoviridae), Ema-
ravirus, and Tospovirus. Since the envelope is not required for cell
entry and subsequent cell-to-cell movement, we argue that its lim-
ited presence in these genera is because it facilitates vector-borne
viral transmission.

Rhadboviruses are unusual in that they are able to infect both
plants and animals, with Cytorhabdovirus and Nucleorhabdovirus
able to bud in the plant and insect host (74). In plants, budding
virions are found in the perinuclear space and at the cell mem-
brane (74). Since the enveloped form of plant viruses is not trans-
ported to neighboring cells (67, 75), it has to be assumed that
enveloped Rhabdoviridae in plants are transmitted solely by vec-
tors. This scenario has also been reported for Tospovirus, the only
genus of the Bunyaviridae infecting plants. Mature Tosposvirus
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virions accumulate in the plant cells, waiting to be transmitted by
feeding thrips (68). The enveloped, vector-borne emaviruses have
been recently discovered in several plant species (76), and their
capability for cell-to-cell movement is likely based on the capsid,
rather than the envelope (77).

In the enveloped Tospovirus, two transmembrane glycoproteins
Gy and Gg, are required for vector transmission, as repeated pas-
sages through plants led to accumulated mutations in those pro-
teins that subsequently impaired insect transmission (78). In ad-
dition, targeted point mutations in Gy and G¢ inhibited
transmission through thrips (79), although plant infection was
not impaired. Cytorhabdovirus and Toposvirus are all circulative
and persistent within the vector. In addition, Rhabdoviruses show
a wider array of vectors, while Toposvirus is associated only with
thrips (18, 80). This strongly suggests that the envelopes of envel-
oped plant viruses are an adaptation to the vector, not the host.

Cell walls impair cell-to-cell communications, and structures
like the plasmodesmata serve as communication channels be-
tween plant cells. Viruses have adapted them for viral movement
within the plant hosts. While plant viruses can acquire an envelope
in plant cells, the envelope is not required for viral cell-to-cell
movement, which is facilitated by the capsid or RNP. That all
enveloped plant viruses are vector-borne strengthens our theory
that nonenveloped viruses are an adaptation to the cell wall, and
envelopes are needed only upon vector-aided translocation due to
the fact that viral transport is possible as capsid, RNP, or naked
DNA/RNA, such that the viral envelope is not required.

Virus Exit

The absence of a cell wall in animal cells favors endocytosis for cell
entry and budding for cell exit. Budding pathways have been suc-
cessfully adopted by viruses. Several enveloped viruses hijack the
ESCRT pathway (19, 81) that is responsible for a variety of func-
tions in a cell, including endosomal sorting, receptor signaling,
and cytokinesis (26). Only a few enveloped viruses lyse the host
cell to be released, while virtually all nonenveloped viruses exit the
host cell through lysis (Table 2). Interestingly, nonenveloped vi-
ruses infecting animals do not use excretion pathways and lyse
their host cell (Table 2).

With the exception of the Inoviridae, all bacteriophage escape
the host cell through lysis. Inoviridae encode three proteins that
create a secretion channel through the cell wall and bacterial
membranes (61). Recent research with Gram-negative bacteria
indicates that both the cell wall and outer membrane are actively
disrupted through a spanin complex (82). Permeabilization of the
inner membrane is the first step, whereby holins and pinholins,
small viral membrane proteins, are secreted into the inner mem-
brane of the host and upon activation allow cell wall-degrading
enzymes to leave the cytoplasm (83—-87). The subsequent release of
endolysins into the periplasm degrades the peptidoglycan. While
the spanin complexes are required to disrupt the outer membrane,
its mechanics are unknown (88). Similarly, the release pathway of
the enveloped bacteriophage Cystovirus is currently unclear. Bac-
teriophage that do not possess an envelope can induce lysis by
holins without being permeabilized themselves. In contrast, virus
envelopes can be targeted by holins, especially as the envelope is
acquired from the host.

Lysis of a bacterial cell involves membrane-disrupting proteins.
Therefore, viruses that acquire an envelope from the inner mem-
brane of the host turn themselves into a putative target for mem-
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brane permeabilization. This, in turn, would release capsids that
are capable of digesting cell walls but not getting past the outer or
inner membranes of bacteria. Hence, we propose that members of
the Tectiviridae and Corticoviridae evolved the outer capsid to pro-
tect their envelope during host cell lysis. Since virus particles can-
not diffuse through the cell wall, exocytosis pathways in plants and
bacteria are not used for viral release.

EVOLUTIONARY IMPACT OF CELL WALLS ON VIRAL
ENVELOPES

Our association study of 101 viral families and their hosts revealed
a strong relationship between enveloped viruses and animal host
cells and nonenveloped viruses and host cells with cell walls. An
extensive literature review of viral entry, transmission, and exit
strategies of these viral families supports our main hypothesis that
cell walls were central to the evolution of nonenveloped viruses,
while the lack of a cell wall provides an adaptive advantage to
viruses with envelopes. The cell wall constitutes an important
physical barrier that cannot be breached by endocytosis for entry
or exocytosis for exit. In bacteria, where membranes are present,
viral envelopes are used to get past either the outer or inner mem-
brane but lack the sophisticated arsenal of receptors found on
enveloped viruses that infect animal cells.

The Viral Envelope Is a Result of Convergent Evolution

A variety of models can be proposed to explain the evolution of the
viral envelope. If we assume that early viruses were enveloped,
then they must have lost their envelope several times (Fig. 3A).
Conversely, if early viruses were not enveloped, as seems more
likely, then they have gained their envelope several times (Fig. 3B).
A third possibility is the initial coexistence of enveloped and non-
enveloped viruses and subsequent selection in the corresponding
hosts leading to either gain or loss of the envelope (Fig. 3C). The
scattered presence of envelopes among viral taxa strongly suggests
that they have evolved convergently, which we propose reflects the
presence or absence of cell walls in phylogenetically diverse host
species.

Itis also possible that host jumps allowed nonenveloped viruses
to infect animals and enveloped viruses to infect hosts with cell
walls. For example, a large number of new RNA viruses have re-
cently been identified in arthropods, constituting a potentially
huge viral reservoir (89). Since arthropods have a close ecological
relationship to both plants and vertebrates, host jumps from
plants to animals via arthropods are not unlikely. As mentioned
above, animal cells show less discrimination between enveloped
and nonenveloped viruses than organisms that possess a cell wall,
and the ability of plant virus capsids to release genes into mam-
malian cells has been demonstrated (89). Hence, the pivotal posi-
tion of arthropods between plants and vertebrates could have fa-
cilitated the adaptation of nonenveloped viruses to vertebrates.

The only enveloped viruses in plants are Emaravirus, Bunyavi-
rus, and Rhabdovirus. As noted above, the envelopes of plant vi-
ruses appear to be an adaptation to the vector, rather than to the
plant, and hence could be the result of a host jump. Since all other
plant viruses are not enveloped, they have obviously lost the en-
velope or were never enveloped. However, the former scenario
seems highly unlikely, since plants evolved before insects (90, 91).
Entering the plant through mechanical injuries after being trans-
ported by environmental factors like wind or rain would still be

410 mmbr.asm.org

Microbiology and Molecular Biology Reviews

possible, although likely inefficient. As a consequence, early envel-
oped plant viruses appear to have few ways to be transmitted.

Plant viruses can move within their host by plasmodesmata and
phloem, while fungal viruses can transverse their hosts due to
perforated septa. These specialized cell-to-cell links evolved to fa-
cilitate cell communication, overcoming the rigidness and imper-
meability of cell walls. Crucially, we argue that this development
also led to preferential infection by nonenveloped viruses. Hence,
most plant and fungal viruses are not enveloped, since fusion or
budding from a plant or fungal cell is not feasible due to the pres-
ence of a cell wall and because transport inside the host is possible
only via the RNP or capsid. The adaptation of viral capsids or
RNPs for transport by plasmodesmata and the later emergence of
arthropods means that early plant viruses were very likely nonen-
veloped. In turn, this means that Emaravirus, bunyaviruses, and
rhabdoviruses infected plants subsequent to the emergence of ar-
thropods.

Cystoviridae and Plasmaviridae are the only known enveloped
bacteriophage families, and both have a very limited known host
range, the former infecting only Pseudomonas, while the latter
infect only Mycoplasma, suggesting that the envelope is a highly
specialized adaptation. Although several bacteriophage with in-
ternal membranes exist, such membranes lack the receptors re-
quired for cell entry. Therefore, viruses infecting cells with a cell
wall do not need an envelope per se, and if it is present, it serves as
a tool to gain access to the cell wall by fusion with an outer mem-
brane or fusion with the inner membrane after cell wall digestion.
As mentioned earlier, numerous bacteriophage encode their own
membrane proteins but gain the lipids required for their mem-
brane from their hosts. Therefore, a scenario of coexisting nonen-
veloped and enveloped early viruses (Fig. 3C) is unlikely. Assum-
ing early bacteriophage were able to synthesize their own lipids
and lost this ability over time in favor of using host lipids, we
speculate that bacteriophage will have a wider host range than
currently seen, as in the case of the cystoviruses where a mutation
in a coding region would allow them to infect Gram-positive hosts
(Fig. 2).

In sum, we argue that early viruses were likely nonenveloped
with the viral envelope a later adaptation (Fig. 3A). In support of
this, nonenveloped bacteriophage show the simplest adaptation
for bacterial infection, since they are able to enter and exit their
hosts with the least interference. In contrast, enveloped bacterio-
phage need to deal with the lytic pathway and limited entry pos-
sibilities. Without a cell wall, endocytosis of enveloped and non-
enveloped viruses would most likely occur, as seen in animal
viruses. However, the cell wall renders endocytosis and exocytosis
not feasible. The use of lytic enzymes to exit the host requires the
permeabilization of the cell membrane, thereby potentially threat-
ening the virus itself. Without an envelope, membrane permeabi-
lization is not a concern. This, in turn, influences virus entry, since
membranes are required for several bacteriophage to enter the
host cell.

The enormous diversity among virus families greatly compli-
cates phylogenetic analysis, including whether virus envelopes
have been gained or lost through evolutionary history. However,
previous studies have revealed clear evolutionary relationships be-
tween the so-called alphavirus-like (nonenveloped) and flavivi-
rus-like (enveloped) positive-sense RNA viruses (92) and among
the Mononegavirales group of negative-sense RNA viruses (89). In
addition, it has also been shown that nonenveloped picornavi-
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ruses can acquire an envelope from the cellular membrane (93).
Together, these data offer support to the idea that the viral enve-
lope evolved convergently.

The Viral Envelope as an Adaptation to Animal Cells

Entering animal cells requires the correct signals to trigger en-
docytosis. Animal cells use membrane-bound receptors for cell
signaling, which viruses use to gain entry into the cell. The viral
envelope is advantageous in such cases, since different viral
receptors can be expressed, providing the virus with the ability
to trigger more than one endocytosis pathway. In contrast,
capsids (in the absence of envelopes) offer less flexibility to
attach different receptors. Acquiring the host’s membrane not
only offers less visibility to the immune system but allows a
flexible way to mount receptors. For example, Ebola virus uses
glycoproteins to mask its epitopes, a strategy not applicable to
viral capsids due to its rigidity. Experiments with the nonen-
veloped plant viruses Luteovirus and Begomovirus revealed that
they interact with GroEL, a chaperone of a symbiotic bacterium in
aphid vectors (94, 95). This interaction is required for circulative
transmission and protects against degradation in the vector (96,
97). Chaperones are not only involved in protein folding but also
in membrane translocation. Luteovirus and Begomovirus enter the
primary salivary glands in the vector via endocytosis before infect-
ing the host via the saliva. We assume that GroEL functions as an
envelope substitute, since the receptors on the viral capsids do not
trigger endocytosis, indicating that capsids have a limited flexibil-
ity to attach different receptors. However, cases where nonenvel-
oped viruses can attach to several receptors are also known. For
example, foot-and-mouth-disease virus is known to attach to two
different receptors in vivo, integrin (98) and heparan sulfate pro-
teoglycans (99).

A common denominator among organisms with cell walls is the
lack of an adaptive immune system. While innate immunity rec-
ognizes pathogens in a generic way, the adaptive immune system
has virtually unlimited possibilities to recognize pathogens. Viral
membranes offer the possibility to adapt to different cell types by
expressing or including different varieties of membrane-bound
entry receptors than on a single capsid. Such complexity is not
required to evade innate immune systems. In addition, viral trans-
port from the entry site to different organs increases the exposure
of the viruses to the adaptive immune system. In such a scenario,
the envelope may serve as a decoy, as the virus appears to be a host
cell.

In sum, our extensive review has revealed a close association
between cell walls and nonenveloped viruses that was not
bound to particular types of host organism. The cell wall pro-
vides a physical barrier that hinders the interaction of receptors
on the viral envelope with receptors in the cell membrane, an
interaction that is central to the infection of animal cells. Al-
though there are exceptions to this important evolutionary
generality, we show that they can be considered to be individual
adaptations. We also propose that early viruses were nonenvel-
oped and that the viral envelope has evolved several times in-
dependently, reflecting the diversity of hosts encountered; this
provides a new perspective on our understanding of virus ori-
gins and evolution.

412 mmbr.asm.org

Microbiology and Molecular Biology Reviews

APPENDIX

Calculating the Radius of a Spherical Protein of 60 kDa To
Estimate the Particle Exclusion Size for Cell Walls

We calculated the volume of the protein (V) and used this to
calculate its diameter. The average density of a protein of 60 kDa
can be calculated as described previously (100, 101), resulting in
1.4114 g/cm’. The volume for a protein of this size is then calcu-
lated as follows:

V(nm?)
={[1/p(g/cm’) X 10*(nm’/cm*)]/Na(Da/g)} X M(Da)
(1)

V(nm?)
= {[0.70851(cm’/g) X 10*(nm’/cm’)]/Na(Da/g)} X M(Da)
(2)
V(nm?®) = [7.08516(nm’/g)/Na(Da/g)] X M(Da) (3)
V(nm?®) = 0.00117 (nm?/Da) X M(Da) (4)
V(nm?®) = 0.00117(nm?/Da) X 60, 000(Da) (5)
V = 70.579(nm?) (6)

where V is the volume of the protein, p is the density of the
protein (in grams/cubic centimeter), M is the mass of the protein
(in daltons), and Na is Avogadro constant.

Assuming a sphere with volume V, the diameter (d) is calculated
as follows:

d(nm) =2 X (3V/4w"?) (7)
d(nm) =2 X [3 X 70.579(nm?) /4mw"?] (8)
d = 2.563 nm 9)
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